Progetto di Ricerca

SCAFFOLD PER LA RIGENERAZIONE DEI TESSUTI SCHELTRICI:

VALUTAZIONE PRECLINICA DELLA LORO COMPATIBILITA’ ED EFFICIENZA

FIRB - Accordi di Programma 2010 - Prot. RBAP10MLK7

Fondamenti e Razionale

Il sistema muscolo-scheletrico è costituito da diverse componenti tessutali e può essere affetto da numerosi processi patologici, sia degenerativi che traumatici che spesso comportano la perdita di ampie aree di tessuto funzionale. Le patologie articolari rappresentano un sempre più ampio settore della medicina a causa del progressivo aumento dell’età dei pazienti che necessitano di trattamenti ricostruttivi e della crescente richiesta di trattamenti che garantiscono una miglior qualità della vita. Inoltre, importanti ripercussioni sul metabolismo dell’apparato osteo-articolare, con conseguenti alterazioni biologiche e biomeccaniche, possono manifestarsi a seguito di malattie di tipo metabolico e a trattamenti di tipo sistemico nei soggetti affetti da neoplasie, negli emodializzati e nei trapiantati a seguito di terapie immunosoppressive e/o chemioterapiche. Lo sviluppo di nuove metodiche meno invasive e che favoriscono la rigenerazione dei tessuti appare quindi di primaria importanza e potenzialmente con un notevole impatto sociale ed economico. In particolare, la riparazione dei tessuti richiede talvolta tempi lunghi, produce risultati non soddisfacenti e può dar luogo a tessuti di riparazione con caratteristiche funzionali non sovrapponibili ai tessuti originali (es. pseudoartrosi, fallimenti protesi ecc...). Da tempo si ricercano soluzioni a questa condizione di deficienza dei processi riparativi attraverso approcci di medicina rigenerativa. Lo sviluppo delle conoscenze nel campo della biologia cellulare e delle biotecnologie ha permesso lo sviluppo di tecnologie mirate alla rigenerazione in situ dei tessuti danneggiati mediante l’ingegneria tessutale. Questa tecnologia prevede la coltivazione ed espansione di cellule in vitro, la loro semina su scaffold porosi, con composizione e caratteristiche opportuni, che vengono colonizzati e permettono l’adesione, la proliferazione e la sintesi di matrice da parte delle cellule, per la produzione di nuovo tessuto una volta che gli scaffold così ingegnerizzati verranno impiantati in vivo. Da qui la necessità di sviluppo di dispositivi e supporti in grado di promuovere la rigenerazione tessutale.

In tale ambito sono stati proposti una varietà di materiali (polimeri sintetici e naturali, sali inorganici, compositi inorganici-polimerici) e sono state proposte numerose tecnologie di produzione. La crescita cellulare, la ri-vascolarizzazione, un nutrimento e un apporto di ossigeno adeguati, sono tanto più favoriti quanto più il supporto imita la matrice extracellulare. Quindi uno scaffold biomimeticco dovrebbe essere simile al tessuto biologico anche in termini di composizione chimica.

Obiettivi principali
L'obiettivo generale di questo progetto è lo studio e lo sviluppo di scaffold con tecniche di ingegneria tessutale per il trattamento di patologie e lesioni dell'apparato muscolo-scheletrico. Le fasi principali del progetto, opportunamente articolate, saranno caratterizzate e riconducibili ai seguenti punti:

1. definizione biocompatibilità di scaffold a base di gelatina per la riparazione di difetti del sistema muscolo-scheletrico, in modelli sperimentali in vitro ed in vivo;
2. definizione bioattività e biofunzionalità degli scaffold, in modelli sperimentali in vitro ed in vivo;
3. ingegnerizzazione degli scaffold porosi con cellule del tessuto muscolo-scheletrico;
4. valutazione del comportamento e delle condizioni per l'ottimizzazione della crescita e sviluppo dei costrutti ingegnerizzati per la definizione di processo ottimale.

I compiti dell'unità di ricerca del Dipartimento di Scienze Mediche e Chirurgiche dell'Università di Bologna, all'interno del progetto, sono molteplici:

- valutazione della biocompatibilità di scaffold a base di gelatina per la riparazione di difetti del sistema muscolo-scheletrico, modelli in vitro;
- valutazione preclinica degli scaffold promettenti: gli scaffold selezionati mediante le valutazioni in vitro verranno testati per biocompatibilità e bioattività in vivo;
- valutazioni post-espanito: verrà valutata la biofunzionalità degli scaffold in vivo analizzando le capacità rigenerative mediante analisi morfologiche, biochimiche e biomolecolari, analisi istologiche, immunoistocheimiche ed istomorfometriche;
- nel caso di scaffold osteocondutti, si procederà ad analisi microtomografiche tridimensionali in vivo per valutare il processo crescita ossea all'interno degli scaffold, prove meccaniche di resistenza al carico, e prove microdurimetriche per valutare il grado di mineralizzazione dell'osso neoformato;
- i risultati che scaturiranno da queste attività saranno analizzati da un punto di vista statistico.

Metodi

L'attività si articolera nelle seguenti fasi:

- valutazione della biocompatibilità e biofunzionalità di scaffold a base di gelatina per la riparazione di difetti del sistema muscolo-scheletrico, mediante modelli in vitro. Per valutare la proliferazione e bioattività cellulare, si utilizzeranno diversi tipi cellulari dell'apparato muscolo-scheletrico, condrociti, osteoblasti, cellule staminali mesenchimali, e ogni tipo cellulare sarà caratterizzato attraverso un pattern di markers specifici. Per quanto riguarda gli osteoblasti, per esempio, la valutazione del differenziamento cellulare e dell'attività metabolica sarà effettuata attraverso Fosfatasi Alcalina (ALP), Osteocalcina (OC) e Procollagene di Tipo I. Verranno valutati inoltre la sintesi di fattori di crescita come il Transforming Growth Factor β1 (TGFβ1) e quelli relativi allo sviluppo di processi infiammatori dosando le citochine Interleuchina 1 β (IL-1 β), Interleuchina 6 (IL-6) e Tumor Necrosis Factor α (TNFα). La valutazione della produzione di proteine, citochine e fattori di crescita sarà effettuata sui lisati cellulari o sui surnatanti delle colture, con metodiche biochimiche e immunoenzimatiche tipo ELISA, mentre attraverso tecniche di biologia molecolare sarà valutata l'espressione genica.

- valutazione preclinica scaffold promettenti attraverso idonei modelli sperimentali in vivo (seguendo scrupolosamente le attuali normative, Dir. UE 63/2010); verranno valutati gli
effetti locali all'impianto secondo la normativa UNI EN ISO 10993-6:2009 “Valutazione e istologica dei dispositivi medicali. Parte 6: valutazione degli effetti locali all'impianto”, con lo scopo di valutare la risposta biologica del tessuto all'impianto, confrontandolo con un materiale di controllo (materiale utilizzato in dispositivi medici di cui è ben stabilita l'accettabilità clinica);
— valutazioni post-espiazzo: al raggiungimento dei tempi sperimentali prestabiliti, verrà valutata le biofunzionalità degli scaffold in vivo analizzando le capacità rigenerative mediante analisi morfologiche, biochimiche e biomolecolari. Verranno condotte, in particolare, analisi istologiche, immunoistocheimiche e istomorfometriche e, nel caso di materiali osteoinduttivi, verranno condotte analisi microtomografiche tridimensionali al fine di valutare il processo di crescita ossea all'interno degli scaffold; mediante analisi biomolecolari si valuterà l'espressione dei principali geni coinvolti nel differenziamento; potranno essere condotte, nel caso di materiali osteocondrettivi, prove meccaniche di resistenza al carico in compressione, flessione, torsione e prove microduriemetriche per valutare il grado di mineralizzazione dell'osso neoformato;
— analisi statistiche dei risultati ottenuti.

Benefici attesi e aspetti innovativi

I principali risultati che si attendono sono i seguenti

• l'individuazione di scaffold innovativi che supportino la crescita di cellule del sistema muscolo-scheletrico e cellule staminali mesenchimali;
• la valutazione dei costrutti ingegnerizzati più idonei ed efficaci per la rigenerazione tessutale;
• la valutazione dei risultati preclinici, nell'ottica del trasferimento clinico dei dati ottenuti.

Gestione ed analisi dei risultati

Modalità con le quali si ritiene di documentare le attività:

— pubblicazioni scientifiche su riviste, nazionali ed internazionali, con Impact Factor;
— comunicazioni a congressi nazionali ed internazionali;
— diffusione dei risultati sul piano informativo: si prevedono appuntamenti scientifici dedicati durante le fasi di avanzamento del progetto;
— diffusione dei risultati sul piano formativo: i giovani ricercatori reclutati nell'ambito del progetto verranno inseriti e preparati nell'ambito delle attività di ricerca e diffusione dei risultati;

Calendario

Il progetto FIRB Prot. RBAP10MLK7 è triennale ed è strato prorogato per ulteriori 10 mesi; la borsa di studio ha durata di 12 mesi.

Finanziamento
Sede

Il Tutor

Prof. Marco Zoli
Titolo del Progetto di Ricerca
SCAFFOLD PER LA RIGENERAZIONE DEI TESSUTI SCHELETRICI: VALUTAZIONE
PRECLINICA DELLA LORO COMpatibilità ED EFFICIENZA
FIRB - Accordi di Programma 2010 - Protocollo: RBAP10MLK7
Oggetto Borsa di Studio
Titolo: Metodiche di ingegneria tessutale nell’ambito della medicina rigenerativa

PIANO DI FORMAZIONE

Tutor: Prof. Marco Zoli, co-tutor Prof. Roberto Giardino

La formazione del borsista avrà come obiettivo specifico lo studio per l’approfondimento delle
metodiche e tecniche di ingegneria tessutale nell’ambito della medicina rigenerativa per le
patologie dell’apparato muscolo-scheletrico.
In particolare, il borsista affronterà un percorso di formazione multidisciplinare permettendo un
ampliamento delle proprie conoscenze culturali e tecniche utili ad uno svolgimento efficace delle
proprie attività in questo settore.
Il percorso formativo prevede di approfondire:
- tecniche di gestione e manipolazione delle colture cellulari sia di origine umana che
 animale, dall’isolamento delle stesse alla loro espansione in coltura, tecniche di
 congelamento e scongelamento, semina in piastra e con contatto diretto bi-
 tridimensionale con gli scaffold;
- valutazione della risposta cellulare all’interfaccia con i biomateriali con anche la possibilità
di utilizzare test biochimici specifici per i differenti tipi cellulari per la valutazione della
vitalità, proliferazione attività sintetica e differenziamento;
- tecniche di biologia molecolare.

Schema dell’Iter Formativo

L’iter formativo ha una durata di 12 mesi e prevede lo svolgimento delle suddette attività presso il
Dipartimento di Scienze Mediche e Chirurgiche - DIMEC - dell’Università di Bologna e presso il
Laboratorio Studi Preclinici e Chirurgici dell’Istituto Ortopedico Rizzoli di Bologna, secondo quanto
previsto dalla convenzione per attività di collaborazione scientifica e di ricerca Rep. n. 20/2011

Il borsista avrà l’opportunità di essere inserito in un ambiente di ricerca dedicato e di svolgere la
propria attività a stretto contatto con ricercatori esperti sia in ambito laboratoristico che preclinico.
Altro aspetto importante è rappresentato dalle opportunità offerte nella stesura di lavori scientifici,
pubblicazioni e partecipazioni a congressi in cui verranno presentati i risultati scaturiti dalle attività
di ricerca.

Il Tutor
Prof. Marco Zoli